Global Convergence Technique

GIAN Short Course on Optimization:
Applications, Algorithms, and Computation

Sven Leyffer
Argonne National Laboratory

September 12-24, 2016

ssssssssssss




Outline

@ Introduction
© Line-Search Methods

© Trust-Region Methods
@ The Cauchy Point
@ Outline of Convergence Proof of Trust-Region Methods
@ Solving the Trust-Region Subproblem
@ Solving Large-Scale Trust-Region Subproblems

a 2/32



Global Convergence Techniques

Still consider

e
minimize (x),

where f : R” — R twice continuously differentiable.

Question
How can we ensure convergence from remote starting points?

Methods can fail if step is too large ... or too small

Two mechanisms restrict steps:
© Line-Search Methods ... search along descend direction s()
@ Trust-Region Methods ... restrict computation of step.

Both converge, because steps revert to steepest descend.



Failures of Newton's Method

Failure of Newton for f(x) = x* + x*y + (1+y)? minimize f(X) =X — =X .

Failure of Newton
f(x) = xf’ +x1x0 + (1 + X2)2)
No descend direction

1 L
08 06 04 02 0 02 04 06 08

Step too large
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General Line-Search Method

Recall line-search method for mini%ﬂze f(x)
x€RN

General Line-Search Method
Let o > 0 constant. Given X(O), set k = 0.

repeat
Find search direction s() such that s(K)" g(x(¥)) < 0.

Compute steplength « such that Wolfe condition holds.

Set x(k*t1) .= x(K) 4 o, s(K) and k = k + 1.

until x(%) is (local) optimum;

Wolfe Line-Search Conditions
£ 4 aps®) — £ < 5y g™ sk)

g(X(k) —+ Oéks(k))TS(k) Z O-g(k)Ts(k).
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[llustration of Wolf Conditions

g(X(k) + OékS(k))TS(k) Z o-g(k)Ts(k)

Slope at x(K) in direction s() is s(k)Tg(k)

A

@ l1st condition requires AN
sufficient decrease

@ 2nd condition moves
x(Kt1) away from x(K)
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General Line-Search Method

Theorem (Convergence of Line-Search Methods)
e f(x) continuously differentiable and gradient
e g(x) = Vf(x) Lipschitz continuous on R".
Then, one of three outcomes applies:
@ finite termination: g(k) =0 for some k > 0, or

@ unbounded iterates: lim Flk) — —00, or
k—o0

© directional convergence:

lim min ‘s(k)Tg(k)
k—o00

- [s®

‘S(k)T g(k)’
=0.

The third outcome only somewhat successful:
.. in the limit there is no descend along s(¥).



General Line-Search Method

Corollary (Convergence of Steepest Descend Method)
e f(x) continuously differentiable and gradient
e g(x) = Vf(x) Lipschitz continuous on R".

Then steepest descend algorithm results in:
@ finite termination: g(k) =0 for some k > 0, or

@ unbounded iterates: lim Flk) — —00, or
k—o0

© convergence to a stationary point: klim g(k) =0.
— 00

Strengthen descend condition from s(9)" g(x(K)) < 0 to
T
st g(x") < —olg(x")|?

. s(A) has o component of steepest descend direction

= any line-search method with stronger descend converges.
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Trust-Region Methods
More conservative than line-search methods:
@ Computation of search direction inside a trust-region
@ Revert to steepest descend as trust-region is reduced
@ Computationally more expensive per iteration
. enjoy stronger convergence properties

Motivation for Trust-Region Methods

@ Taylor model around x(¥) accurate in neighborhood of x(¥)

@ Minimize Taylor model inside some neighborhood.

How to define neighborhood?
@ Depends on function
@ Shape may be very complex

Use simple trust-region:

Ix — x| < Ak
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Trust-Region Methods

Trust-region method for mini%ﬂze f(x)
xeR"

Basic Idea of Trust-Region Methods
@ Minimize model of f(x) inside trust-region ||x — x|, < Ay
@ Move to new point, if we make progress
© Reduce radius Ay, if we do not make progress
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Trust-Region Methods
Trust-region models for
minimize f(x)

x€eR"

Trust-Region Models

@ Linear model:
Ik(s) = f(k)+STg(k) ~ f(X(k)+s)
e Quadratic model
gu(s) = FK) 4 sTg®) +%573(k)5 ~ (x4 s)

where (¥ = £(x()), g) = V£(x(0), and B ~ V2f(x(X)
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lllustration of Linear/Quadratic Trust-Region Models

Quaratic Model of f(x)

i
=
-
5
K]
-]
]
=

Linear Model of f(x)

Linear Model of f(x)
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Quadratic Trust-Region Subproblem

Quadratic trust-region subproblem

1
minimize gx(s) = f(k)—i-sTg(k)-i-ESTB(k)S subject to [|s[l2 < Ak
S

. only needs to be solved “approximately” ... more later!

£> norm is natural choice for unconstrained optimization.

M-norm for positive definite matrix, M, is a useful alternative:

[ — x|y == \/(X — x0T M (x = x(K) < A M-norm TR

o Mitigates poor scaling of variables
@ Trust-region subproblem easy to solve

@ Interpret M as a preconditioner for trust-region subproblem
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Trust-Region Radius Adjustment

Adjust Ay based on agreement of actual and predicted reduction

. ._ _actual reduction FU) — £ (x(F) 4 s(R)y

““7 predicted reduction ~ f(K) — qr(s(¥)
@ ry~ 1= qx(s)closeto f(x) .......ooviiiiiiiiii.. accept
o r, <0 = f(x) increases over step s(K) ... ... ... ... reject

Trust-Region Radius Adjustment
@ If r, > ns > 0 then accept step & possibly increase Ay

@ If r, < ns then reject step & decrease Ay
. resolve TR subproblem to get better agreement, ry
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Trust-Region Radius Adjustment

Illustration of trust-region adjustment

Linear Model of f(x)
Cd

z

Linear Model of f(x)
7

2

reject accept
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General Trust-Region Method

S

Let 0 <ns <y and 0 < vg < 1 < ;.
Given x(9), set k = 0, initialize Ay > 0.
repeat

Approximately solve the trust-region subproblem.
FUO_ £ (x(0) 4 (k)

R —qy (1K)
if r. > n, very successful step then

Accept the step x(kt1) .= x(K) 4 g(k),

Increase the trust-region radius, Axi1 1= v Ak.
Ise if ri > ns successful step then

Accept the step x(KT1) .= x(k) 4 (k).

Compute ry =

o

o

Ise if r < 1ns unsuccessful step then
Reject the step x(kt1) .= x(K).
Decrease the trust-region radius, Axy1 := ygQk.

end
Set k =k + 1.

until x(¥) is (local) optimum;

Keep the trust-region radius unchanged, Ayy1 = Ag.
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General Trust-Region Method

Reasonable values for Trust-Region parameters:
@ Very successful step agreement: 7, = 0.9 or 0.99
@ Successful step agreement: ns = 0.1 or 0.01,
@ Trust-region increase/decrease factors y; = 2,74 = 1/2

Do not increase trust-region radius, unless step is on boundary

Trust-region algorithm much simpler than previous methods
o Computational difficulty hidden in subproblem solve

@ Must be careful to solve TR subproblem efficiently.

19/32



The Cauchy Point & Steepest Descend Directions

Use steepest descend for minimalist conditions on TR subproblem

Definition (Cauchy Point)

Cauchy point: minimizer of model in steepest descend direction

ac = argmin g(—ag®) subject to 0 < aflg®|| < Ak
(03

A
= argmin gx(—ag¥)) subject to 0 < a < H (:)H.
a g

then Cauchy point is sgk) = —a.gk

@ Cauchy point is cheap to compute

@ Cauchy point is minimalistic assumption for convergence:
k
k(%) < qi(s™) and [|sW) < A,
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Outline of Convergence of Trust-Region Methods

Outline of convergence proof ... ideas apply in other areas

© Lower bound on predicted reduction from Cauchy point:

1 _ (k)
pred. reduct. f(k)—qk(sgk)) > §||g(k)”2 min (Zl!tg||8|(|’f)||’ﬁAk> :

@ Corollary TR subproblem solution s(¥), satisfies lower bound.

o TR step makes at least as much progress as s((;k)

© Bound agreement between objective and quadratic model:
f(xU) 4 sty — g (sk)| < kA2,

% > 0 depends Hessian bounds ... from Taylor’s theorem.



Outline of Convergence of Trust-Region Methods

Cont. outline of convergence proof ...

@ Crucial Result
Can always make progress from non-critical point g(¥) = 0:

If Ag < ||g(k)||2/£(1 —1y), then very successful step

. and Ak+1 > Ak

o Here k(1 —1,) constant
e 7)5 threshold for very successful step

Intuitive: reducing A gives better agreement
. make progress with ry ~ 1

@ If gradient norm bounded away from zero, i.e. ||g(¥)| > € > 0,
... then trust-region radius also bounded away from zero:

||g(k)H >e>0 = Ag>er(l—n).

© If number of iteration finite, then final iterate is stationary.



.
Outline of Convergence of Trust-Region Methods

Summarize results in theorem ...

Theorem (Convergence of TR Method with Cauchy Condition)

f(x) twice continuously differentiable and Hessian matrices
B®) HK) pounded. Then, TR algorithm has on of three
outcomes:

Q finite termination: g(¥) = 0 for some k > 0, or

@ unbounded iterates: lim Fk) — —00, or
k—o0

© convergence to a stationary point: klim g(k) =0.
— 00
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.
Solving the Trust-Region Subproblem

Remarkable Result about TR Subproblem
With ¢>-norm TR, can solve TR subproblem to global optimality. J

Theorem
Global minimizer, s*, of trust-region subproblem,

minimize q(s) :=f +g7s+ sTBs subject to |s|] < A
S

satisfies (B + \*I)s* = —g , where
e B+ X\*I positive definite,
@ \* >0, and
o X(|Is*|l2—A) =0.

Moreover, if B + X*I is positive definite, then s* is unique.
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Solving the Trust-Region Subproblem

Theorem
Global minimizer, s*, of trust-region subproblem,

minimize q(s) :=f +g's+ 3sTBs subject to ||s|l < A
S

satisfies
(B+\1)s* = —g,

where B + \*| positive definite, \* > 0, and X*(||s*||o — A) = 0.
Moreover, if B+ \*I is positive definite, then s* is unique.

@ Necessary and sufficient conditions for global minimizer
e Optimality conditions are KKT conditions of TR subproblem.
@ Suggest way to solve TR subproblem to global optimality
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Solving the Trust-Region Subproblem

Divide solution of TR subproblem,
minimize q(s):=f +g’s+ 3s"Bs subject to [|s|» < A
S

into two cases:
@ B pos. def. and solution of Bs = —g, satisfies ||s|| < A
@ B not pos. def. or solution of Bs = —g, satisfies ||s|| > A

Case 1: B positive def., and Bs = —g, satisfies [|s]| < A

@ Solution s is global solution of TR subproblem

. modern factorization routines detect positive definiteness

26
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Solving the Trust-Region Subproblem

Trust-region subproblem

minimize q(s):=f +g’s+ 3s"Bs subject to [|s|» < A
S

Case 2: B not pos. def. or solution of Bs = —g, satisfies ||s| > A

Optimality conditions of TR subproblem: (s*, \*) satisfies
(B+X)s=—g and s's=A?

set of (n+ 1) linear/quadratic equations in (n+ 1) unknowns.
Methods for solving linear/quadratic equation:

@ Compute Cholesky factors of B + A/

@ Eliminate s from quadratic equation

@ Solve nonlinear equation for A ... repeat

. need to be careful in certain difficult cases.



Solving Large-Scale Trust-Region Subproblems

Trust-region subproblem
minimize q(s):=f +g's+ 3s"Bs subject to [|s|l> < A
S

Cholesky factors are computationally impractical for large n
= consider iterative methods for solving TR subproblem

@ Conjugate gradients good choice
... first step is steepest descend consistent with Cauchy step!

@ Get convergence to stationary points for “free”

Adapting Conjugate Gradient to TR constraint
@ What is the interaction between iterates and the trust region?
@ What do we do, if B is indefinite?
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Solving Large-Scale Trust-Region Subproblems

Trust-Region Subproblem Conjugate-Gradient Method

Set 50 =0, g(o) =g, d0 = —g,and i =0.
repeat
Exact line search: a; = ||g||2/(d()" Bd())

New iterate: s(*1) = s() 4 o;d()

Gradient update: glit1) = g(1) 4 o;Bd()
Fletcher-Reeves: ; = ||g+D12/||g()||?

New search direction: d(t1) = —g(i+1) 4 3,¢())

Set i =i+1. .
until Breakdown or small ||g\)|| found;

Breakdown: needs to be defined (reach TR or indefinite)
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Solving Large-Scale Trust-Region Subproblems

minimize q(s) :=f +g's+ 3s"Bs subject to [|s|> < A
s

What is the interaction between iterates and the trust region?

Theorem

Apply conjugate-gradient to trust-region subproblem, assume
d)"Bd() >0 for all 0 < i < k. Then

Is@)l2 < s"D)2 vo<i<k.

o If |s)|| > A at iteration i,
... then subsequent iterates lie outside TR too.

@ Once we pass TR boundary, then we know that ||s*|| = A
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Solving Large-Scale Trust-Region Subproblems
minimize q(s):=f +g's+ 3s"Bs subject to [|s|l> < A
S

Termination Conditions for TR Conjugate Gradient
Terminate CG solution of TR subproblem, if
© Find non-positive curvature: d)" Bd() <0
= q(s) is unbounded along d(/).

@ Generate iterate outside TR
= all subsequent iterates lie outside the TR

If |s0F| > A, then compute step to boundary solving for a.:

Is¥) + afd?3 = A2

Approach OK convex case, poor for nonconvex f(x).

Prefer more elaborate Lanczos method for nonconvex f(x).
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Conclusions
Introduction to Trust-Region Methods

Quaratic Model of f(x)

@ Minimize model of f(x)
inside trust-region
Ix = x| < A

Measure progress ratio

actual reduct.

r =
predicted reduct.

Accept step if good progress

Reject step if poor progress
. and reduce A

Solve TR subproblem to
global optimality
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